If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+0X=135
We move all terms to the left:
X^2+0X-(135)=0
We add all the numbers together, and all the variables
X^2+X-135=0
a = 1; b = 1; c = -135;
Δ = b2-4ac
Δ = 12-4·1·(-135)
Δ = 541
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{541}}{2*1}=\frac{-1-\sqrt{541}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{541}}{2*1}=\frac{-1+\sqrt{541}}{2} $
| 8m=416(m=) | | 6(2x+8)=24+6x | | 8z+5+3z+10=180 | | -4+4x=8x-4(1+5x) | | 7x+1+2x+11=180 | | 8s-10=(6-2s | | 10+r=2(2r+2) | | 2z+8=8 | | x2+11=38 | | 6x^2+36= | | 5^x-2=29 | | 30=13/10b | | 1x=9x-10 | | 5(2y-3)=7(2y+3) | | y−7=21 | | 7x+1+2x+11=90 | | x/x+2+7/x-5=14/x^2-3x-10 | | 3(2a-5)+4(3a+2)=11 | | 8m=416,m= | | 5(2y-3)=7(2y=3) | | 2x÷5-3÷5=11÷5 | | 20=-4v | | 4(7^x)=16 | | 30=6(5+4y) | | 273=87-v | | 3*(x-4)=7x+8 | | 7^2-4x+√9=15x2-2x | | 5x+2x=x | | 2.8-2x=-6.2 | | 291=5x+1 | | 3u-15=42 | | x/x-3-7/x+5=24/x^2+2x-15 |